
一、基本情况
刘湘楠,男,汉族,湖南邵阳人,1992年5月出生,博士,副教授,硕士生导师,机械电子与测控仪器系副主任;湖南省仪器仪表学会理事;主要从事动力机械装备结构强度评估、耐久性测试等方面研究工作;主持国家自然科学基金青年项目、校企联合项目,校级课程思政教改项目等多个课题;在《International Journal of Fatigue》、《Fatigue & Fracture of Engineering Materials & Structures》、《Measurement》、《机械工程学报》、《振动工程学报》等国内外高水平学术期刊上发表论文20余篇;中国精品科技期刊顶尖学术论文(F5000)1篇;担任《Structural Control & Health Monitoring》、《Measurement》、《振动测试与诊断》等多个期刊的审稿人。
联系电话:16676750513
Email: lxn920613@hnust.edu.cn
二、学习工作经历
[1] 2023.06-至今 湖南科技大学 机电工程学院 校聘副教授
[2] 2019.09-2023.06 华南理工大学 机械工程 博士
[3] 2018.03-2019.6 中国铁建重工集团股份有限公司 助理工程师
三、主要研究方向
[1] 机械结构疲劳寿命预测
[2] 动力机械装备振动响应与强度分析
[3] 动力机械装备耐久性评估
四、主持科研项目
[1] 国家自然科学基金青年项目“叠层减振橡胶多轴非比例疲劳损伤演化机理及寿命预测”,项目经费:30万元;2025.01~2027.12.(主持)
[2] 校企联合项目“空气能热泵烘干机金属管路疲劳寿命分析项目”,项目经费:10万元;2023.10-2025.10.(主持)
[3] 校级课程思政教改项目“机电传动与控制课程思政元素挖掘与融合教学改革方法研究”,项目经费:0.4 万元;2024.09~2026.09. (主持)
五、代表性学术论文
[1] Xiangnan Liu, Jinghai Tan, Shangbin Long. Multi-axis fatigue load spectrum editing for automotive components using generalized S-transform[J]. International Journal of Fatigue, 2024: 108503. (中科院SCI一区TOP,JCR Q1, IF=6.0)
[2] Xiangnan Liu, Wen-Bin Shangguan, Xuezhi Zhao. Probabilistic fatigue life prediction model of natural rubber components based on the expanded sample data [J]. International Journal of Fatigue, 2022, 163: 107034. (中科院SCI一区TOP,JCR Q1, IF=6.0)
[3] Xiangnan Liu, Wen-Bin Shangguan, Xuezhi Zhao. Residual fatigue life prediction of natural rubber components under variable amplitude loads [J]. International Journal of Fatigue, 2022, 165: 107199. (中科院SCI一区TOP,JCR Q1, IF=6.0)
[4] Xiangnan Liu, Xuezhi Zhao, Xiao-Ang Liu, Wen-Bin Shangguan. A load spectrum editing method of time-frequency for rubber isolators based on the continuous wavelet transform [J]. Measurement, 2022, 198: 111374. (中科院SCI二区TOP, JCR Q1, IF=5.6)
[5] Xiangnan Liu, Xuezhi Zhao, Xiao-Ang Liu. A unified probabilistic fatigue life prediction model for natural rubber components considering strain ratio effect [J]. Fatigue & Fracture of Engineering Materials & Structures, 2023, 46(4): 1473-1487. (中科院SCI二区, JCR Q2, IF=3.7)
[6] Xiangnan Liu, Xuezhi Zhao, Wen-Bin Shangguan. Fatigue life prediction of natural rubber components using an artificial neural network [J]. Fatigue & Fracture of Engineering Materials & Structures, 2022, 45(6): 1678-1689. (中科院SCI二区, JCR Q2, IF=3.7)
[7] Sun YingShuai, Liu Xiangnan*, Yang Qing, et al. Improving Fatigue Life Prediction of Natural Rubber Using a Physics‐Informed Neural Network Model[J]. Fatigue & Fracture of Engineering Materials & Structures, 2024. (中科院SCI二区, JCR Q2, IF=3.7)
[8] Xiangnan Liu, Xuezhi Zhao, Kuanfang He. Feasibility study of the GST-SVD in extracting the fault feature of rolling bearing under variable conditions [J]. Chinese Journal of Mechanical Engineering, 2022, 35(6): 133-147. (中科院SCI二区, JCR Q1, IF=4.2)
[9] Xiangnan Liu, Xuepeng Qian, Yi Xi. Accelerated fatigue bench test method for rubber vibration isolators based on load spectrum compilation[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2024: 09544070241256426. (中科院SCI四区, JCR Q3, IF=1.7)
[10] Xiangnan Liu, Xiaoli Wang. Natural rubber components fatigue life estimation through an extreme learning machine [J]. P I MECH ENG L-J MAT, 2023. (中科院SCI四区, JCR Q3, IF=2.4)
[11] Xiangnan Liu, Kuanfang He. A new scheme for extracting fault features of rolling element bearings [J]. Engineering Computations, 2022, 39(8): 3038-3057. (中科院SCI四区, JCR Q3, IF=1.6)
[12] 刘湘楠,杨宇鑫,石伟,何宽芳. 物理-数据融合驱动的天然橡胶疲劳寿命预测建模方法[OJ].机械工程学报,2024.
[13] 刘湘楠,于超凡. 基于广义S变换的汽车零部件载荷谱编辑方法[OJ]. 振动工程学报, 2024.
[14] 刘湘楠,许靖伟.恒幅载荷下填充天然橡胶概率疲劳寿命预测模型[J].中国机械工程, 2024, 35(08):1366-1372.
[15] 刘湘楠, 赵学智, 何宽芳. 圆柱滚子轴承振动信号时频特征提取及状态识别[J]. 振动工程学报, 2022, 35(04): 932-941.
[16] 刘湘楠, 赵学智, 上官文斌. 强背景噪声振动信号中滚动轴承故障冲击特征提取[J].振动工程学报, 2021, 34(01): 202-210.(中国精品科技期刊顶尖学术论文(F5000))